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Abstract

Graphical techmiques for modeling the dependencies of random variables have heen
explored in a variety of different arcas including statistics, statistical pliysics, artifi-
cial intelligence, speech recognition, image processing, and genctics. Formalisins for
manipulating these models have been developed relatively independently in these ve-
scarch communitics. In this paper we explore hidden Markov models (HMMs) and
related structures within the general framework of probabilistic independence networks
(PINs). The paper conlains a self-contained review of the basic principles of PINs. It is
shown that the well-known forward-backward (1-13) and Viterbi algorithms for HMMs
are special cases of more general inference algorithing for arbitrary PINs. Furthermore,
the existence of inference and estimation algoritiins for more general graphical models
provides a set of analysis tools for HMM practitioners who wish to explore a richer class
of HMM structures. Examples of relatively complex models to handle sensor fusion and
coarticulation in speech recognition are introduced and treated within the graphical
model framework Lo illustrate the advantages of the general approach.

1 Introduction

For multivariate statistical modeling applications, such as hidden Markov modcling, for
speech recognition, the identification and manipulation of relevant conditional indepen-
dence assmptions can be a useful {001 for model-Hhuilding and analysis. There has recently
heen a considerable amount. of work exploring, the relationships between conditional inde-
pendence in probability models and structural properties of related graphs. I particular,
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the separation propertics of a graph can be directly related to conditional independence
propertics in a set of associated probability models.

The key point of this paper is that the analysis a1id manipulation of 11 MMs can he
Tacilitated by exploiting the relationship betweerl probability models and graphs. The major
ad vantages 1o be gained are in:

« Modcl Description: A graphical inodel provides a natural aud intuitive medium for
displaying dependencies which exist between random variables.  In particular, the
structure of the graphical model clarifies the conditional independencies in the asso-
ciated Drobability miodels, allowing mode] assessim e and revision.

« Computational Efficiency: The graphical model is a powerful Bagis for specifying
eflicient, algorithms for computing quant it ies of interest in the hrobability model, ¢. g,
calculation of the probability of 01 )served datl a given the model.  T'hiese inference
algorithims can 1)(: specified automatically oncethe initial structure of the graph is
determined.

We will refer to hoth probabilit y models and graphical models. Iach consists of siruc-
ture and paramciers. The structure of the model consists of the specification of a set of
conditional independence relalions for the probabiility model, or a set of (inissing) edges in
the graph for the graphical mod el. The paraineters of 1)(){]] the probability and graphical
todels consist Of the specification of the joint probability distrihution: in factored form for
the ] robability model and defined locally ont he nodes of the graph in t he graphical inodel.
The inference P roblem is that of the calculat ion of post erior probabilitics of variables of
interest given 01 Hservable data and given a specification of the prohalilistic odel. The
rcelated task of MA P identification is the det ermination of the most likely state of a set of
unobserved variables, given obscrved varialles and the prrobabilistic 1oclel. The learning
orestimation problem is that of determining the paramet ers (and possibly structure) of the
probhabhilistic model from data.

This paper reviews the applicability and utility of graphical modeling to HMMs. Sec-
tion 2 introduces the basic notation for probability 11odel g and associated graph structures.
Section 3 smmnarizes relevanit results from the literat ure on probabilistic independence net-
works (or 1 ‘INs for short), in particular, the relat ionships which exist between separation
in a grapl and conditional independence in a probability mnodel.  Section 4 interprets the
st andard first-order HMM in terins of PINs. 11 Seetion 5 the standard algorithm for in-
ference in a directed 1 'IN is discussed and applied to the standard HMM in Section 6. A
result of interest isthat the 1°-11 and Viterhialgorithims are shown t o 1ye special cases Of this
inference algorithm. Section 7 shows that the inference algorithms for undirected 11 Ns arce
cssentially the same as those alrcady discussed {for direct ed 11 Ns. Section 8 introduces more
complex HMM structures for speech niodeling and analyzes 1€ using the graphical model
fraamework. Section 9 reviews known estiination results for graphical 1odels and discusses
their potential implications for practical problems in the estimation of HMM structures,
and Section | O contains surnnary remarks.

2 Notation and Background

Tt U= {Xy, Xo, .o, Xn} represent a set of  discrete-valued random variables. Tor tile
purposes of this paper we restrict our attent ion to discret e-valued random varialsles, how-




cever,many of theresults stated genceralize directly to continuous and ini xed sets of randoin
variables (1 .auritzen and Wermuth 1 989; Whittaker 1 990).1.ct lower case @) denote one

~

of the values of variable Xi: the notation 7, is taken to mcan the sumover @l possible
values of Xi. 1 .ct p(a;)be shorthand for the Particular pyrolability p(X; = a;), whereas
p(X;) represents the probability function for X; (& table of val ues, since X; IS assumed
diserete), 1 <7 < N. ‘171 full joint distribution functionis p(U) = (X7, Xo, . ... Xn)and
pu): (1,20, ... ,an) denotes a particular value assigument for U.

If A, I3and C arc disjoint sets Of randomvariables, the conditional independence rela-
tion A1 B|C is defined such that that A is independent. of 13 given €, i.e., p(A, B|C) =
p(A|C)p(3)C). Conditional independence 1S symmetric. Note also that marginal inde-
pendence (no conditioning) dots not in general imply conditional independence, nor does
conditional independence in gerieral imply marginal independence (Whittaker 1 990).

With any, set, of random variables U we can associate a graph G defined as G = (V, I2).
V denotes the set of vertices or nodes of the g raph such that there is a one-to-one mapping,
hetween the nodes in the 8raph and the random variables, i.e, V={X;, Xo, ... . Xn }. I¥
denotes the set of edges, {¢(4, 7)}, where 7 and 7 are shorthand for the 11[)(1('s X; dlid X,,
| <i,7 < N.Edges of the form e(i, i) are not. of interest and thus are not allowed in the

graphs discussed in this paper.

If the edges are ordered such that e(, 7) mcans that the edge is directed from node i
to node 7,7 is a parent of its child 7. Avvancesior of noded is a node which has as a child
cither 7 or another ancestor of 4. A subset of nodes A is anancestral set if it contains its
own ancestors. A descendant of 7 is @ cither a child of 7 or achild of a descend ant. of 1.

T'wo nodes i and 7 arc adjacent in G if I contains the edge ¢4, j). A path is a sequence
of distinct nodes {1, . ... m} suchthat there exists an edge for each pair of nodes {1, 7-11} on
the path, A graph is singly-connected if t here exists only one path between any two nodes
inthe g raph. A cycle is a path such the beginming and ending nodes 011 the pa th are the
same. A directed cycle is a cycle of direcied edges which @l point inthe same direction.

If I contains only undirected edges then the graph G is an undirccted graph (UG). I
14 contains only directed edges and () directed cycles, t heny G is anacyclic divected graph
(ADG). I £ contains a mixture of direct ed and undirected edges, then i is referred to
as amized or chain graph. We  note in passing that there exists a theory for graphical
independence models involving mixed graphs (Whittaker 1990) but mixed graphs will not
he discussed further in this paper.

For an UG G, a subset, of nodes C separales two other subsets of nodes A and 731 every
pi ] joining, every pair of nodes i ¢ A andJ ¢ I3 comtains at least one node from ¢ For
Al Gsand mixed graphs analagous; hut somewhat more complicated , separation properties
exist.

A cycleis chordless if 110 othier than successive ] airs of nodes in the cycle are adjacent.
A graph G is trangulated if and only if the only chordless cycles in the graph cont ain 1()
11101’ than threenodes. Thus, if’ one can find a chordless cycle of length four or more, G is
not. triangulated.

A graph G is complete if there are edges hetween all pairs of nodes. Thecligues of G are
the largest subgraphs of G which are complete. A cliguctree for G is a tree of cliques such
that there is a one-to-one node correspondence het ween the cliques of G and t he nodes of
the tree.




Figure 1: An example of a UPIN structure G which captures a particular set of conditional
independence relationships among the set of variables {X7,..., X¢}. For example, Xy |

{X1, X2, X4, X6 }{X3}

3 Probabilistic 1 ndependence Networks

We briefly review the relation hetween a probability model p(U) = p(Xy,..., Xn) and a
probabilistic independence network structure G = (V) /). The results in this section are
largely snmmarized versions of material in Pear]l (1988) and Whittaker (1990) .

A probabilistic independence network structure (PIN structure) G, is a graphical state-
ment of a set of conditional independence relations for a set of random variables U. Absence
of an edge e(7, 7) in G implics some independence relation between Xy and X, Thus, a PIN
structure G is a particular way of specifying the independence relationships present in the
probability model p(U). We say that G implics a set of probability models p(U), denoted as
Pe:yic., p(U) € Pe. Inthe reverse direction, a particular model p(U) embodies a particular
sct. of conditional independence assumptions which may or may not be representable in a
consistent. graphical form. One can derive all of the conditional independence properties
and inference algorithms of interest for U without reference to graphical models. However,
as has been emphasized in the statistical and Al literature, and is reiterated in this paper
in the context of hiddenn Markov models, there are distinet advantages to be gained from
using, the graphical formalism.

3.1 Undirccted Probabilistic Independence Networks (UIPINs)

A UPIN is composed of both a UPIN structure and UPIN parat neters. A UPIN struciure
specifies a set of conditional independence 1 elations for a probability model in the form of
an « ndirccled graph. Ul 'IN paramciers consist of numerical specifications of a particular
probability model consistent with the UPT N structure. Terms used in the literature to
described UPT Ns of one form or another include Markov randomn fields, Markov net works,
Boltzimann machines, and log-lincar models.



Figure 2: A triangulated version of the UPIN structure G from Figure 1.

3.1.1 Conditional Independence Semantics of UPI N Structures

Let A, B, and S be any disjoint subscts of nodes in an undirected graph (UG) G. G is
an undirected probabilistic independence network structure (UPIN structure) for p(U) if
for any A, I3, and S such that S separates A and I3 in G, the conditional independence
relation A 1 I3|S holds in p(U). The set of all conditional independence relations implied
by separation in G constitute the (global) Markov propertics of G. Figure 1 shows a siinple
example of a UPIN structure for 6 variables.

Thus, separation in the UPIN structure implies conditional independence in the proba-
bility modecl, i.c., it constrains p(U) to belong 1o a sct of probability models P¢; which obey
the Markov properties of the graph. Note that a complete UG is trivially a UPIN structure
for any p(U) in the sense that there are no constraints on p(U). G is a perfect undirected
map for p if G is a UPIN structure for p and all the conditional independence relations
present in p are represented by separation in G. For many probability models p there are
no perfect undirected maps. A weaker condition is that a UPIN structure G is mansmal
for a probability model p(U) if the ramoval of any edge from G implies an independence
relation which is not present in the model p(U), i.c., the structure without the edge is no
Jlonger a UPIN structure for p(U). Minimality is not equivalent to perfection (for UPIN
structures) since, for example, there exist probability models with independencies which
can not be represented as UPINs except for the complete UPIN structure. For example, if
X and Y are marginally independent, but conditionally dependent given 7 (sce Figure 4(a)
for an example), then the complete graph is the minimal UPIN structure for {X,¥, 7} hut
it is not perfect because of the presence of an edge between X and Y.

3.1.2  Probability Functions on UPIN structures

Given a UPIN structure G, the joint probability distribution for U can be expressed as a
simple factorization:

pla) = plag,...,an) = Il ac:(a¢) (1
Ve

where Ve is the set of cliques of Gy a¢ represents a value assigniment for the variables in a
particular cligue €, and the ac(a¢) are non-negative cligue functions. The cligue functions



represent the particular parameters associated with the UPIN structure. This corresponds
directly to the standard definition of a Markov random ficld (Ishamn 1981). The clique
functions reflect the relative “compatibility” of the value assigimmnents in the clique.

A model pis said 1o be decomnposable if it has a minimal UPIN structure G which is
triangulated (Figure 2). A UPIN structure G is decomposable if G is triangulated. For
the special case of decomposable models, G can be converted to a junction Iree, which is a
tree of cliques of G arranged such that the cliques satisfly the running intersection property,
namely, that, each node in G which appears in any two diflerent cliques also appears in all
cliques on the path bhetween these two cligues. Associated with each edge in the junction
tree is a separaior S, such that S cortains the variables in the intersection of the two cliques
which it links. Given a junction tree representation, one can factorize p(U) as the product
of dlique marginals over separator marginals (Pearl 1988):

Hecv, plac)
plu= 000
Hacvg plas)
where p(ae) and p(ag) are the marginal (joint) distributions for the variables in clique C
and scparator S respectively and Ve and Vg are the set of diques and separators in the
junction tree.

O]

This product representation is central to the results in the rest of the paper. It is the
hasis of the fact that globally consistent probability calculations on U can be carried out,
in a purcly local manner. The mechanics of these local caleulations will he desceribed later
in the paper. At this point it is suflicient to note that the complexity of the local inference
alporithims scales as the sum of the sizes of the state-spaces of the cliques. Thus, local clique
updating can make probability calculations o U much more tractable than using “hrute
force” inference, if the model decomposes into relatively small cliques.

Many probability models of interest may not be decomposable. However, we can define
a decomposable cover G for p such that G’ is a triangulated, hut not necessarily minimnal,
UPIN structure for p. Since any UPIN G can be triaugulated siimply by addition of the
appropriate edges, one can always identify at least one decomposable cover G'. However, a
decomposable cover may not be minimal in that it can contain edges which obscure certain
independencies in the model p: for example, the complete graph is a decomposable cover for
all possible probability models p. For efficient inference, the goal is to {ind a decomposable
cover G’ such that G’ contains as few extra edges as possible over the original UPIN structure
G Later we discuss a specific algorithm for finding decoinposable covers for arbitrary PIN
structures. ANl singly-connccted UPIN structures imply probability models Pg which are
decomposable.

Note that, given a particular probability model p and a UPIN G for p, the process of
adding extra edges to G to create a decomposable cover does not change the underlying
probability model p, i.e., the added edges are a convenience for manipulating the graphical
representation, but the underlying munerical probability specifications remain unchanged.

An important point is that decomposable covers have the raiming intersection property
and thus can be factored as in Bquation 2: thus local clique updating is also possible with
non-decormposable models via this conversion. Once again, the complexity of such local
inference scales with the sum of the size of state-spaces of the cliques in the decomposable
Cover.

In summary, any UPIN structure can he converted to a junction tree permitting inference
calculations to be carried out purcly locally on cliques.
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Figure 3: (a) A DPIN structure G which captures a set. Of independence relationships
among the set {X71, . . . . X5}. Yor example, X4 1 X1 X2. (1) The moral graph GM for G777,
where the ]arents of X have boen linked.

3.2  Directed Probabilistic Independence Networks (1D1’INs)

A DPIN is composed of hoth a DPIN structure and DPIN parameters. A DPIN struclure
specifies a set of conditional independence relations for a probability model in the form of
a direcied graph. DPIN parameters consist. of inunerical specifications of a particular prob-
ability model consistent with the DPIN structure. DPINsg are refared to in the literature
using different naines, including Bayes network, belief network, recursive graphical model,
causal (belief) network, and probabilistic (causal) network.

3.2.1 Conditional 1 ndependence Semant ics of DI’1 N Structures

A DPIN structure is an ADG G” = (V, 1)) where there is a one-to-one correspondence
between Voand the elements of the set of randomn variables U= {Xy,..., Xn}.

The moral graph GM of G7 is defined as the undirected graph obtained from G770 by
placing undirected edges between all non-adjacent parents of cach node and then dropping,
the directions from the remaining directed edges (sce Figure 3b for an example). The term
“moral” was coined Lo denote the “marrying” of “umnarried” (nonadjacent) parents.

Let A, 13, and S be any disjoint. subscts of nodes in G, G7 is a DPIN structure
for p(U) if for any A, I3, and S such that S scparates A and I3 in G| the conditional
independence relation A 1 IB3|S holds in p(U). This is the same definition as for a UPIN
structure except that separation has a different interpretation in the directed context: S
separates A from I3 in a directed graph if S separates A from 73 1w the moral (undirected)
graph of the smallest ancestral set containing A, I3, and S (Lauritzen ot al. 1990). 1 can
bhe shown that this is equivalent to the statement that a variable X; is independent of all
other nodes in the graph except for its descendants, given the values of its parents. Thus,
as with a UPIN structure, the DPIN structure implics certain conditional independence
relations, which in turn imply a set of probability models p € Pen. Figure 3a containg a




Iigure 4: (@) ‘J])(! DPIN structure to encode the fact that X5 deprends on Xy and Xo but
X1 1 Xg. For example, consider that A1and Xy are two independent. coil) {flips and that
X3 is a bell which rings when the flips are the samne. There is no perfect UIPIN structure
which can encode these dependence relationshiprs. () A UPIN structure which encodes
X1 -1 Xg[{ X, Xz} and Xo 1 X3[{ Xy , X4}. There is no perfect DPIN structure which can
cncode these dependencies.

simple example of a DPIN structure.

3.2.2 Probability IFunctions on DPINs

A basic property of a DPIN structure is that it implies a direct factorization of the joint,
probability distribution p(U):

]\7
p(u) = ]I])(.’If,'lj)(l(.’l,',')) (3)
i1

where pa(ay) denotes a value assignment for the pavents of X0 A probability model p can
be written in this factored form in a trivial mammer by the conditioning rule. Conscquently
there are many possible DPIN structures consistent with a particular probability maodel p,
potentially containing extra edges which hide true conditional independence relations. 1'has,
once can define minimal DIPIN structures for p in a manner exactly equivalent to that of UPIN
structures: deletion of an edge in a miniinal DPIN structure G

relation which does not hold in p € P, Similarly, G is a perfect DPIN structure G for p if

implies an independence

G is a DPIN structure for p and all the conditional independence relations present in p are
represented by separation in G, As with UPIN structures, minimal does not. imply perfect
for DPIN structures. Yor examnple, consider the independence relations Xq 1 X4q[{ Xy, X3}
and Xy | X3[{X1, X4}: the minimal DPIN structure contains an edge from Xy to X (sce

Figure 4(h)).

3 . 3 Differences between Direcled and Undirected Graphical Representa-
tions

It is an iimportant point that divected and undirected graphs possess different conditional
indepenidence semnantics. There are coonmon conditional independence relations which have
perfect DPIN structures but no perfect UPIN structures and vic(!-versa (sce Figure 4 for
examples).




Docs a DPIN structure have the saie Markov properties as the UPIN structure obtained
by dropping all the directions on the edges in the DPIN structure? The answer is yes if
and only if the DPIN structure contains no subgraphs where a node has two or more non-
adjacent parents (Whittaker 1990; Pearl et al. 1990). In general, it can be shown that
if a UPIN structure G for p is decomposable (triangulated) then it has the same Markov
properties as some DPIN structure for p.

On a more practical level, DYIN structures arve frequently used to encode causal in-
formation, i.c., to formally represent the belief that X; preceeds X in some causal sense,
c.g., temporally. DPINs have found application in causal modelling in applied statistics
and artificial intelligence. Their popularity i these fields stems from the fact that the joint
probability model can be specified divectly via Equation 3, i.c., via the specification of con-
ditional probability tables or functions (Spicgelhalier et al. 1991). In contrast, UPINs must
be specified in terms of clique functions (as in Jguation 1) which may not be as casy to
work with (cf. Geman and Geman (1984), Modestino and Zhang (1992) and Vandermculen
et al. (1994) for examples of ad hoc design of cligue functions in image analysis). UPPINs
are more frequently used in problems such as iiage analysis and statistical physics where
associations arc thought to be correlational rather than causal.

3.4 From ] )PINs to (] decomposalsle) UPINs

The moral UPIN structure GM (obtained from the DPIN structure G) does not iinply any
new independence relations which are not present in G, As with triangulation, however,
the additional edges may obscure conditional independence relations which are iimplicit. in
the numerie gpecification of the original probability model p associated with the DPIN
stracture GP. Fartherimore, GM nay not be triangulated (decoinposable). By the addition
of appropriate edges, the moral graph can be converted to a (non-unique) iriangulated
graph G', naniely a decomposable cover for GM . Tn this inanner, for any probability model
p for which G is a DPIN structure, one can construct a decomposable cover G' for p.
This mapping froin DPIN structures to UPIN structures was first discussed in the con-
text of eflicient inference algorithims by Lauritzen and Spicgelhalter (1988). The advantage
of this mapping derives fromn the fact that analysis and manipulation of the resulting UPIN
is considerably more direct than dealing with the original DPIN. Furthermore, it hias heen
shown that many of the inference algorithins for DPINs are in fact special cases of inference

algorithms for UPINs and can be considerably less efficient (Shachter et al. 1994).

4 Modeling HMMs as PINs

4.1 PINs for I1MMs

In hidden Markov modeling problems (Poritz 1988; Rabiner 1989) we are interested in
the set of random variables U = {H,0,, 15,05, ..., Hx. 1,0n. 1, 1N, On}, where H; is
a discrete-valued hidden variable at index 7, and 0, is the corresponding discrete-valued
obscarved variable at index 4, 1 < ¢ < N {the results here can be directly extended 1o
contiimous-valued observables). The index ¢ denotes a sequence from 1 1o N, for example,
discrete thme steps. Note that O; is considered univariate for convenience: the extension to
the multivariate case with d observables is straightforward but is omitted here for siinplicity
since i does not iluninate the conditional independence relationships in the HMM,
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Pigure 5: (@) The I'IN structure for HMM(1,1)(b) A corresponding junctiontree.

The well-known simple firs(-order HMM obeys t he following two conditional indepen-
dence relations:

My 4 {I1h,0y, ... 11 5,0 5,00 1}y, 2<i<N (4)

and
O; V {11,01,...,H;. 1,00 1}, 2<i<N (5)

We will refer to this © first-order” hidden Markov probability mode]l as HMM(1 ,1 ): the
notation HMM(J, J) is defined such that the model has state memory of depth I\ and
contains J separate underlying state processes. T'he notation will be clearer inlater sections
when we discuss specific examples with I, J > 1.

Construction of a PIN for IMM(1,1) is particularly simple. In the undirected case, as-
sumption 1 requires that cach state Hi is only connected to My from thie set, {1, 0,,.... Hi2,0i , 0i 3y
Assumption 2 requires that O/ is only connected to Hy. The resulting UPI N structure for
HMM(1,1) is shownin Figurce 5a. This graph is singly-conmected and thus implies a de-
composable probability 111[)[1('1 p for HMM(1,1) , where the cliques are of the forin { Hi, 05}
and {Hi- 1, 11;} (Figure 5b). In Scction 5 we will see how the joint probability function
can 1)( 1 expressed as a product function on the junction treg, thusleading t () a junctiont tree
definition of the familiar 113 and Viterhi inference algorithns.

Yor the directed case the conncctivity for t he DPIN st ructure is t he same. 1 iS natural
to choose the directions on tlie edges between i and 1; as going from i - 1 to i (although
the reverse direction could also be chosen wit hout changing the Markov propertics of the
graph). ‘1'11( directions 011 thic edges between 11, and O; must e chosenas going, from 71
to Oi vather than in the reverse direction (Figure 6a). In reverse (Figure 6b) the arrows
would imply that O is marginally independent of 11, 1which is not true in the ITMM(1,1)
probahility inodel. The PTOLer direction for the edges mplies the correct relation, na mely
that Qi is conditionally independ ent of 1],. 1 given 11,

The 1OPI N structure for HMM (1,1) dots not possess a subgraph with non-adjacent
parents. As stat ed earlier this implies that the iniplied independence properties of the
1 OPIN structure are the same as those of the corresponding UPIN structure oblained by
dropping the directions fromn the edges in the 1)PIN structure, and tlms they both result in
the same junction tree structure (IFigare 5b). Thus, for the 1T IMM({1 ,1) probability model,
the miniimal divected and undirected graphs1 )oss(’ss the saine Markov propertics, i.e., imply
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Figure 6:1)] “IN structuresfor HMM (] ,] ): (8 the LIPIN St ructure for the HMM(1,] ) proh-
ability miodel, (b) a DPINstructure which is not a DPIN structure for the HIMM(1,1 )
probability model.

the same conditional independence relations. 1hurt hermore, both PIN structures are perfect
maps for the directed and undirected cases respectively.

4.2 Inferencecand MA I’ PProblemsin 1 IMMs

1 the context of ITMMs, the most cotmmon inference problem 1S the calculation of the

likelihood of the observed evidence given the model, i.e ., ploy, . . . . on/1110[1( 1), wherethe
0]>..., o~ denote observed values for O, ... . Opn. (In this section we will assume that we

ave dealing with one particular mod ¢l where U i structure and parameters have alveady
bheen determined and, thus, we will not explicitly indicate conditioning on the model). The
‘D111 foree” mnethod for obtaining this probability would he to s out the unobserved
state variables from the full joint probability distribution:

plot,. ., 0N) = 2; p(Il, 01y, Hn, ON) (6)

Iyyhn

where Ii; denotes tlie possible values of hidden variable 11,

Another inference calenlation of interest is the caleulation of p(lilor, ..., 0n), for any or
all 4, namely, the probability of a particular hidden state value given the observed evidence.
Inferring the posterior state probabilitics is useful when the states have direct physical
interpretations (as in fault monitoring applictions (Smyth 1994)) and is also iinplicitly
required during the standard Bawn-Welcl i le arning algoritlnn for HMM(1,1).

In general, both of these computations scale as ™ where mis thenumber of states
for cach hidden variable. In practice, the 1B algoritlhnn (Poritz 1988; Rabiner 1989) can
perform these inference calculations with inuch lower complexity, namely Nm?. The likeli-
hood of the observed evidence can be obtained with the forward step of the 1-13 algorithmn:
calculation of the state posterior probabilitics reguires both forward and backward steps.
The F-B algorithin relics on a factorization of the joint probability function to obtain lo-
cally recursive methods One of the key points in this Paper js that the graphical immodeling
approach provides an automatic method for determining such local efficient factorizations,
for an arbitrary probabilistic model, of efficient factorizations cxist given the C1 relations
specified in the model.

1



The MATD identification problen in the context of HMMs involves identifying the most
likely hidden state sequence given the observed evidence. Just as with the inference problem,
the Viterbi algorithm provides an cfficient, locally recursive method for solving this problem
with complexity Nm?, and again, as with the inference problem, the graphical modeling
approach provides an automatic technique for determining eflicient solutions to the MAD
problem for arbitrary models, if an eflicient solution is possible given the structure of the
model.

5 Inference and MAP Algorithms for DPINs

Inference and MADP algorithins for DPINs and UPINS are quite similar: the UPIN case
involves some subtleties not encountered in DPINs and so discussion of UPIN inference and
MATP algorithing is deferred until Section 7. The inference algorithm for DPINs (developed
by Jensen, Lauritzen and Oleson (1990) and hereafter referred to as the J1.O algorithin) is a
descendant of an inference algorithmm first described by Lauritzen and Spicgelhalter (1988).
The J1.O algorithm applics to discrete-valued variables: extensions to the J1L.O algorithin
for Gaussian and Gaussian-mixture distributions are discussed in Lauritzen and Wermuth
(1989). A closely rclated algorithin to the JLO algorithm, developed by Dawid (1992),
solves the MAT identification problem with the same thime-complexity as the J1L.O inference
algorithm,

We show that the J1LO and Dawid algorithins are strict generalizations of the well-known
1-13 and Viterbi algoritlnns for HIMM(1,1), in that they can be applied to arbitrarily complex
graph structures (and thus a large family of probabilistic models beyond IIMM(1,1)) and
handle missing values, partial inference, and so forth in a straightforward mammner.

There are many variations on the basic J1L.O and Dawid algorithimms. For examnple, PPearl
{1988) deseribes related versions of these algoritinns in his carly work . However, it can be
shown (Shachter et al. 1994) that all known exact algoritlims for inference on DPINg are
equivalent at some level 1o the J1.0 and Dawid algorithing. Thus, it is suflicient to consider
the J1O and Dawid algorithins in our discussion as they subsuine other graphical inference
algorithins.

The JLO and Dawid algorithms operate as a two-step process:

1. The construction step: this. involve. a series of sill)-stc])s where the original divected
graph is moralized and triangulated, @ junction tree is formed, and the junction tree
is initialized.

2. The propagation step: the junction tree 1S used in @ local message-passing manner
to propagate the effects of observed evidence, i.€., to solve the inference and MATP
problems,

The first step is carried out only once for a given graph. The sccond (propagation) step is

carricd ont cach time a new inference for the given graph is requested.

5.1  The Construction Step of the J1.O Algorithm: From DPIN structures
to Junction Trecs

We illustrate the construction step of the JLO algorithin using the simple DPPIN structure,

G, over diserete variables U = {Xq,..., Xg} shown in Figure 7a. The 11,0 algorithm first
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Figure 7: (a) A simple DPIN structure G, (h) The corresponding (undirected) mnoral
graph GM. (¢) The corresponding triangulated graph G'. (d) The corresponding junction

trec.
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constructs the moral graph aM (Figure 7b). It then triangulates the moral graph GM 1o

obtain a decomposable cover G' (IFigure 7¢). The algorithin operates in a simple greedy
manner based on the fact that a graph is triangulated if and only if all of its nodes can
be climinated, where a node can he climinated whenever all of its ucighbors are pairwise
linked. Whenever a node is eliminated, it and its neighbors define a clique in the junction
tree that is eventually constructed. Thus, we can triangulate a graph and gencrate the
cliques for the junction tree by eliminating nodes in somne order, adding links if necessary.
If no node can be climinated without adding, links, then we choose the node that can be
climinated by adding the links that yield the clique with the sinallest state-space (Jensen
1995).

After triangulation the JLO algoritlnn constructs a junction tree from G i.e., a cligue
tree satisfying the runming interscection property. The junction tree construction is based on
the following fact. Define the weight of a link between two cliques as the number of variables
i their intersection. Then, a tree of cliques will satisfy the running intersection property
if and only if it is a spanning tree of maximal weight. Thus, the J1LO algoritlnn constructs
a junction {ree by choosing successively a link of maximal weight unless it ereates a cycle.
The junction tree constructed from the cliques defined by the DPIN structure triangulation
in IFigure 7¢ is shown in Figwre 7d.

The worst-case complexity is O(N?) for the triangulation heuristic and O(N?log N) for
the maximal spanning tree portion of the algorithni. This construction step is carried out,
only once as an initial step to convert the original graph to a junction tree representation.

5.2 Initializing the Potential Functions in the Junction Tree

The next step is to take the muneric probability specifications as defined on the directed
graph G (Biquation 3) and convert this information into the general form for a junction
tree representation of p (Iiguation 2). This is achieved by noting that cach variable X;
is contained in at least one cligue in the junction tree. Assign cach X; to just one such
clique and for cach clique define the potential function ae:(C') to be cither the product of
p(XNilpa(X;)) or 1 no variables are assigned to that clique. Define the separator potentials
(in Equation 2) to be 1 initially.

In the section which follows we describe the general J1LO algorithm for propagating
messages through the junction tree to achieve globally consistent probability calculations.
At this point it is suflicient to know that a schedule of local message passing can be defined
which converges 1o a globally consistent marginal representation for p, i.c., the potential
on any clique or separator is the marginal for that cligue or separator (the joint prob-
ability function). Thus, via local message-passing, one can go from the initial potential
representation defined above to a margial representation:

ey rlre)
e v, plas)

plu) = (7)
At this point the junction tree is initialized. This operation initsell is not that useful, of
more interest 1S the ability to propagate inforination through the graph given some observed
data and the mitialized junction tree, c.g., to calculate the posterior distributions of some
variables of interest.

Iroin this point onwards we will implicitly assm ne that the junction tree ha s heen
initialized as described above so that the potential functions are the local marginals.
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5.3 Local Message 1 ’ropagationin .1 unction Trees Using The J1L.O A lgo-
rithm

11 general p(U) can be expressed as

p(u) - —“C(VC aclre) (8)
s Vs bs(ws)
where the a¢ and bg are non-negative potential functions (the potential functions could
he the initial marginals described above for example). K = ({ae: 2 C € Vo), {bs + S ¢
Sc}) is a representation for p(U). A factorizable function p(U) can admit many different
representations, ic., many different sets of clique and separator functions which satisfy
Iquation 8 given a particular p(U).

As mentioned above, the J1LO algorithin carries out globally consistent probability calcu-
lations via local message-passing on the junction tree, i.c., probability inforination is passed
between neighboring cliques and clique and separator potentials are updated based on this
local information. A key point is that the dliques and separators are updated in a fashion
which ensures that at all times I is a representation for p(U), i.e., Fquation § holds at
all tiines. Fventually the propagation converges to the marginal representation given the
initial model and the observed evidence.

The message-passing proceeds as follows. We can define a flow from cligne C; to C; in
the following mannmer where C; and Cj arce two cliques which are adjacent in the junction
tree. Let S, be the separator for these two cliques. Define

b, (xs,) - }; ac,(a¢,) (9)
Ci\ Sy
and
(l};j (.’I'(;j) : (1(7].(.7'(;1,))\5',\ (2g,) (10)

where
b"‘qk (25,)
- . (11)
I)SA (:l?gk)
Ag, (g,) is the update factor. Passage of a flow corresponds to updating the neighboring
clique with the probability information contained in the originating clique. This flow induces
a new representation K = ({ag, : C € Vb, {U4 S ¢ Se:}) for p(U).

A schedule of such flows can be defined such that all cliques are eventually updated

>\Sk (:'75% ) :

with all relevant information and the junction tree reaches an equilibrium state. T'he most
dircct scheduling scheme is a two-phase operation where one node is denoted the rool of the
junction tree. The collection phase involves passing, flows along all edges towards the root-
cligue (if a node is scheduled to have more than one incoming flow, the flows are absorbed
scquentially). Once collection is complete, the distribution phase involves passing flows out
from this root in the reverse direction along, the same edges. There are al most two {lows
along any edge in the tree ina non-redundant schedule. Note that the directionality of the
flows in the junction tree need have nothing to do with any directed edges in the original
DPIN structure.




5.4 The J LO Algorithm for Inference given Observed Evidence

The particular case of calculating the effect of observed evidence (inference) is handled in
thie following manner. Consider that we observe evidence of the form e = {X; = @}, X; =
at, .} and U= {XG, X, ) denotes the set of variables which have heen observed. Let
U - U\ U denote the set of hidden or unohserved variables and u’ a value assigmnent
for UM

Consider the caleulation of p(U"|c). Define an evidence function ¢“(a:;) such that

1 ifa - al
if a ! 12)

C
g (;) - .
g (i) 0 olherwise.

11(‘,1‘
* _ [
)= pa) ] g () (13)
Ue
Thus, we have that f*(u) o p(u’]e). To obtain f*(u) by operations on the junction trec one
Y o il . .

proceeds as follows. First assign cach observed variable X; ¢ U to one particular cligue
which contains it (this is tered “entering the evidence into the clique”). Let " denote
the set of all cliques into which evidence is entered in this manner. For cach ¢ € 7 let

golre) - 11 9 (a) (14)
{i: X, is entered into C'})
‘THls,

f(u) = p(u) x ]I golae ). (15)

ceor
One can now propagate the effects of these modifications throughout the tree using the
collect. and distribute schedule described in 5.3, Let 2l denote a value assignment of the
hidden (umobscrved) variables in clique C. When the schedule of flows is complete one gets
a new representation I such that the local potential on cach clique is f* (2¢) = ];(:r:’(’)., ),
i.c., the joint, probability of the local unobserved clique variables and the observed evidence
(Jensen et al. 1990) (similarly for the separator potential functions). If one marginalizes at

the clique over the unobserved local clique variables,

Yoplate) = ple), (16)
XE
one gets the probability of tlic observed evidence directly. Similarly, if one normalizes the
potential function at a clique to suin to 1, one oblains the conditional probability of the
local unobserved clique variables given the evidence, p(al |e).

e

5.5 Complexity of the Propagation Step of the JLO Algorithm

[ 11 general, the time complexity 7' of propagation within a junction tree is O(}:f(i s(C))
where Ne:is the munber Of cligues in the junction tree and s(C;) is the numhbyer of states in
the joint. state-simc(’ of C; (equal to the product over cach variable in C; of the number of
states of each variable). 1’hus, for inference to be eflicient, we need to construct junction
trees with small clique sizes. 'roblems of finding optivnally g pall junction trees (e. g., finding
the junction tree with (16 gmallest maxinal dlique) are NP-hard. Nonetheless, the heuristic
algorithm for triangulation described carlier has heen found to work well in practice (Jensen
el ar. 1990; Jensen 1995).
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Iigure 8: Local inessage passing in the TTIMM(1,1) junction tree during e (01L(X'{, phase
of a “left to right” schedule. Ovals indicate cliques, boxes indicate separators; and arrows
indicate flows.

6 Inference and MAP Calculations in HMM(1,1)

6.1  The F-B Algorithim for 11IMM(1,1) is a Special Casce of the JLO Al-
gorithm

Iiigure b shows the junction tree for HMM(1,1). In this section we apply the J1O algorithm
to the IMM(1,1) junction tree structure to oblain a particular inference algoritlnm for
HMM(1,1). As mentioned carlier, the HMM(1,1) inference problem consists of being given
a sct of values for the observable variables,

C-= {()] = ()],()2: ()2,‘,.,()]\7: ()N} (]7)

and infarring the likelihood of e given the model. As described in the previous section this
problem can be solved exactly by local propagation in any junction tree using the J1,O
inference algorithm. ‘

Let the final clique in the chain containing (I x. 1,1 n) be the root clique. Thus, a
non-redundant schedule consists of first recwrsively passing flows {from ecach (O;, 11;) and
(H;. 9, H;. 1) to cach (H;. 1, 11;) in the appropriate sequence (the “collect” phase), and then
distributing flows out in the reverse divection from the root chique. 1 we are only interested
in calculating the likelihood of ¢ given the model, then the distribute phase is not necessary
since we can simply marginalize over the local variables in the root clique to obtain p(e).

A comment on notation: subscripts on potential functions and update factors indicate
which variables have been used in deriving that potential or update {actor, c.g., fo, indi-
cates that this potential hias been updated based on information about ) hut not using,
mformation about any other variables.

Assumne that the junction tree has been initialized so that the potential function for cach
cligue and separator is the local marginal. Given the observed evidence ¢, cach individual
*

picee of evidence O = o}

hecomes [ (hiy0i) = p(hi, 0}) after entering the evidence (as in Fquation 14).

is entered into its cligque (O, H;) such that cach cligue marginal
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Consider the portion of the junction tree in Figure 8, and in particular the flow between
(O, 1) and (H; 4, 11;). By definition the potential on the separator 11; is updated to

Jo,(hi) = > 1 (hiyoi) = p(hi, o) (18)

The update factor from this separator flowing into clique (M, 1, 11;) is then

(1, ():f)
p(ly)

This update factor is “absorbed” imo (11;. 1, 1;) as follows:

Ao, (i) = = plof|hi) (19)

f:).(]’Y ],]1,,') = ])(]I,: ],]lri)/\()[(lli) = ])(]l,i. ],’li)])((); Ihi) (2())

Now consider the flow from clique (Hy. o, 1, 3) to cique (5. 1, 11). Let @4 5= {O;,..., 04}
denote a sct of consecutive observable varviables and ¢ ;= {of,..., 03} denote a set of ob-
served values for these variables, 1 <7 < j < N. Assume that the potential on the separator
11;. 4 has been updated to

&3 * *
.)’q.]’b ](}1,11 1) oy (]11'. 1,(/)])7»_ ]) (2])
via carlier flows in the schedule. Thus, the update factor on separvator 11, 7 becomes

]’*(117! ]ad))]’,i» 1)

Aay . (1) = 22
pa ) )
and this gets absorbed into clique (I, 4, ;) to produce
Jay (i, li) = fo, (o, hidAay o (i )
)* /I,'A y )" ;-
e s teplotn? e )
])(]l,', ])

< plol I Uuthe w1, 6 ) (23)

Finally, we can calculate the new potential on the separator for the flow from clique
(M4, 1) to (1, Hiyy),

f‘;’]yi(hi) = Z f:]"lj,'(hi ]),[i) (24)
hiog
= pof ) Y pllhe )pt (hi 1,34y (25)
hio
= p(ofihe) Y p(hilhi ) fa, o (1) (26)
leigy

1 >roceeding recursively in this manner one finally oblai s at the root cligue
* 3+
fq’l, N (hN» 1, ]’N) T 7)(][]\7, 1, IIN, (j)) ,N) (27)
from which one can get the likelihood of the evidence,

pe) = p(@in) = Do fa, y(ine 1, 0n). (28)

Iy 1N
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Fignre 9: Local message passing in the JIMM(1,1) junction tree during the collect phase
of a “right to left” schedule. Ovals indicate cliques, boxes indicate separators, and arrows
indicate flows.

We note that Fquation 26 directly corresponds to the recursive equation (Equation 20
in Rabiner (1989)) for the « variables used in the forward phase of the 1213 algorithin,
the standard HMM(1,1) inference algorithin. In particular, using a “left-to-right” schedule
the updated potential functions on the separators hetween the hidden cliques, the j,(;w,.,- (1)
functions, are exactly the a variables. Thus, when applied to HMM(1,1), the J1.O algorithm
produces exactly the same local recursive caleulations as the forward phase of the F-I3
algoritlnn,

One can also show an equivalence bhetween the backward phasce of the F-13 algorithm and
the JLO inference algorithin, Let the “left-most” clique in the chain, (Hy, Hy), be the root
clique and define a schedule such that the flows go from right to left. FFigme 9 shows a local
portion of the clique tree and the associated flows. Consider that the potential on cligue
(11;,11;11) has been updated already by carlier flows from the vight. Thus, by definition,

Tai oy w s lign) = plhashiga, @0 ) (29)

The potantial on the separator between (1;, Hyy 1) and (H;. 1, Hy) is calculated as:

.f:].’ﬂ]‘]\v(hl') = Z 7)(]1’7'ah1'>|]7(/)2-| ],N) (3())
liga
= (i) D7 phigalh)p ok 1 i )p(dl ol 1) (31)
Teiyy
(by virtue of the various conditional independence relations in HIMM(1,1))

- PPi o s i 0
= p(ly) L Pl l’li)]’((’;-l o 1)! \ l(Z]’A ) ) (32)
]) I,‘,I]

, Lo Uria ) '
_ ' }’i -~ i ; } . * ] i Vi 2N 33
p(hy) L |y (o 1) p(liy1) ()

iy

fiigy
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Defining the update factor on this separator yields

Thiys ()

p(hi)
- T, 0o Ui
S plilhi (ol hig)= 2o 111 (35)

E’i,|],]\r(lli) - (34)

"

i p(lign)
= i POl i )X, (i) (36)
i

This set of recursive equations in A corresponds exactly to the recursive equation (Fquation
25 in Rabiner (1989)) for the £ variables in the backward phase of the F-13 algoritinn. In
fact, the updale factors A on the separators are exactly the # variables. Thus, we have
shown that the J1.O inference algorithin recreates the F-13 algorithin for the special case of
the HMM(1,1) probability model.

6.2 lquivalence of Dawid’s Propagation Algorithm for ldentifying MAI’
A ssignments and the Viterbi A lgorithm

Consider that one wishes to calculate f(u]‘,(-,) T oMaXe,, ., Plar, .., we, ) and one also
wishes to identify a set of values of the unobserved variables which achieve this maximan,
where IV is the number of unobserved (hidden) variables. This calculation can he acheived
using a local propagation algorithm on the junction tree if one makes two modifications
to the standard J1.O inference algorithin described above. This algorithm is duce to Dawid
(1992) and as pointed out carlier this is the most general algorithm from a set of related
methods.
Firstly, during a flow, the marginalization of the separator is replaced by:

bs(ag) = min; ac(ace) (37)
where O is the originating clique for the flow. The definition for Ag(ag) is also changed in
the obvious manner.

Secondly, marginalization within a clique is replaced by maximization:
fo = maxp(u). (38)
1]\.’!'(;
Given these two changes it can be shown that if the same propagation operations are
carricd out as described carlier, the resulting representation 1§ at equilibritnm is such that
the potential function on cach clique C' s

f(2¢): max plal., ¢ {u” \ a¢}) (39)

u\age

where af, denotes a value assignment of the hidden (umobserved) variables in clique €
Thus, once the Ky representation is obtained, one can locally identify the values of Xk
which maximize the full joint probability as

f’(' =g, f(ae). (40)
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In the probabilistic expert systems literature this procedure is known as generating the
“most probable explanation” (MP14) given the observed evidence.

The HMM(1,1) MAP problem consists of being given a set of values for the observable
variables, ¢ = {Oy = 01,02 0y,...,0n = on} and inferring,

max p(hy, ... N, €). (41)
hy,oohwy
or the set of arguments which acheive this maxitmun. Since Dawid’s algorithing is applicable
Lo any junction tree it can directly be applied to the HMM(1,1) junction tree in Figure 5h.
In the Appendix it 1s shown that Dawid’s algorithim, when applied to HMM(1,1), is exactly
equivalent to the standard Viterbi algorithm.

6.3 1 )iscussion of the Kquivalences betweenthe 11 MM andJd 1,0 A lgo-
rithms

As shown above, when HMM(1,1) is modcled as a PIN, the J1.O Jocal propagation algo-
rithing (heneeforth veferred to as “the graphical algorithms”) for this PIN are equivalent to
the well-known 19-B and Viterbi algoritinns. In itself, this equivalence is not surprising since
both pairs of algorithing are solving exactly the same problem via local recursive updating.
For example, Dawid’s mncthod and the Viterhi algorithm are both direct applications of
dynatnic programining to the MAT problemn.

What is interesting about this equivalence result is that the graphical algorithing are
more general than the -3 and Viterbi algorithims:

1. While special purpose extensions to the standard Viterbi and F-1I3 algoritlnns can be
derived to handle various extensions to HMM(1,1) (Tao 1992), the JLO algorithims
provide by definition a completely general exact inference method for any PIN.

O]

The graphical algorithms can casily handle other inference tasks besides just calcu-
lating the likelihood of the evidence or the MAY solution. For example, missing or
probabilistic evidence, simulating values {from the model, caleulating partial solutions,
arc all casy to specify in terms of the graphical algorithnng, These problems in prin-
ciple could also be handled by appropriate modifications to the standard F-13 and
Viterhi algorithins: the point is that the graphical algorithins provide the natural and
divect framnework for identifying such solutions.

Note that the obvious structural equivalence between PIN structures and HMMs has heen
noted before by Buntine (1994), Irasconi and Bengio (1994), and Lucke (1995) among
others: however, the demonstration of equivalence of specific inference algorithins is new as
far as we arce aware.

Using the graphical algoritlnns on HIMM(1,1), when evidence is entered into the ob-
sarvable states and assuming m discrete states per hidden variable, the computational
complexity of solving the inference and MAP problems is O(Nm?). Naturally, given that
they are cquivalent for HMM(1,1), this is the same complexity as the standard F-B and
Viterhi algorithms.
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7 1 nference and MAP Algorithms for UPINs

In Section b we desceribed the JLO algorithin for local inference given a DPIN: for UPINs
the procedure is very similar except for two changes to the overall algoritlnn. The first is
the trivial observation that the moralization step is not necessary. The second difference,
intialization of the junction tree is less trivial. In Section 5.2 we described how to go
from a specification of conditional probabilities in a directed graph to an initial potential
function representation on the cliques in the junction tree. To utilize undirected links in the
model specification process requires new maclinery to perform the initialization step. In
particular we wish to compile the model into the standard form of a product of potentials
on the ciques of a triangulated graph (cf. BEquation 1):

])(“) - ]I (l(,'(.’l,'(;)

Ve

Omnce this initialization step has heen achieved, the J1LO propagation procedure proceeds as
helore.

Consider the chordless cycle shown in Iigure 4h. Suppose that we paramncterize the
probability distribution on this graplt by specifying pairwise marginals (or pairwise poten-
tials) on the four pairs of neighboring nodes. We wish to convert such a local specification
mto a globally consistent joint probability distribution, i.c., a marginal representation. An
algorithm known as Herative Proportional Fitting (1P1°) is available to perform this conver-
sion. Classically, 1P} proceeds as follows (Bishop, Fienberg, & Holland, 1973). Suppose for
simplicity that all of the random variables are discrete (a Gaussian version of 11°F is also
available (Whittaker 1990)) such that the joint distribution can be represented as a table.
The table is intialized with equal values in all of the cells. Ior each marginal in twrn,
the table is then rescaled by multiplying every cell by the ratio of the desired marginal
to the corresponding marginal in the carrent table. The algorithin visits cach marginal
in turn, iterating over the set of marginals. I the set of marginals are consistent. with a
single joint distribution, the algorithin is guaranteed to converge to the joint distribution.
Once the joint is available, the potentials in Fquation 1 can be obtained (in principle) by
marginalization.

Although IP1 solves the initialization problan in principle, it is ineflicient. Jitousck and
Preudil (1995) developed an efficient version of 1P that hoth avoids the need for storing
the joint distribution as a table and avoids the need for explicit marginalization of the
joint to abtain the clique potentials. Jifousck’s version of 111 represents the evolving joint
distribution directly in terms of junction tree potentials. The algoritlnn proceeds as follows,
Let 7 be a set of subsets of V. For cach T € 7, et ¢(y) denote the desired marginal on the
subsel 1. Let the joint distribution be yepresented as a product over junction tree potentials
(Iiquation 1), where cach ag: is initialized to an arbitrary constant. Visit cach 1 € 7 in turn,
updating the corresponding clique potential ae (ie, that potential a¢ for which I € ') as

follows: ()
gy
A "
agre) = aclre) ) "L
pler)

The marginal p(ay) is obtained via the J1LO algorithin, using the carrent set of clique
potentials. Intelligent choices can be made for the order in which to visit the marginals to
minimize the amount of propagation needed to compute p(ay). This algorithin is shmply
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an efficient way of organizing the 11’1~ calculations and inherits the lat ter’s guarantees of
CONVErgence.

For mixed (or chain) graphs, the clique potentials are initialized to constamt values
and are multiplied by the @bDhropriate condit ional probability distributions associat ed with
the directed Yinks (if any). The marginals associated with the undirected links are then
incorporated into the clique potentials by runming 11 °F.

8 More Complex HMMs for Specech Modeling

Although hidden Markov models have provided an exceedingly useful framework for the
modeling of speech signals, it is also true that the simple HMM(1,1) model underlying the
standard framework has strong limitations as a model of speechi. Real speech is generated
by a sct of coupled dynamical systems (lips, tongue, glottis, lungs, air cohunns, ctce.), cach
of which obeys particular dynamical laws. This coupled physical process is not well modeled
by the unstructured state transition matrix of TMM(1,1). Morcover, the first-order Markov
properties of HMM(1,1) are not well suited to modeling the ubiquitous coarticulation effects
that occur in speech, particularly coarticulatory cflects that extend across several phonemes
(cf. Xent & Minifie, 1977). A variety of techmiques have heen developed to surmount these
basic weaknesses of the HMM(1,1) model, including mixture modeling of cinission probabil-
ities, triphone modeling, and discriminative training. All of these methods, however, leave
intact the basic probabilistic structure of HMM(1,1) as expressed by its PIN structure.

In this section we describe several extensions of HMM(1,1) that assume additional prol-
abilistic structure beyond that assumed by IMM(1,1). PINs provide a key tool in the study
of these more complex models. The role of PINs is twofold: first, they provide a concise de-
scription of the probabilistic dependencies assuined by a particular model; and sccond, they
provide a general algorithim for computing, likelihoods. This second property is particularly
hnportant- the existence of the JLO algorithm {rees us {from having to derive particular
recursive algorithims on a case-hy-case basis.

The first 1model that we consider can be viewed as a coupling of two HIMM(1,1) chains
(Saul & Jordan, 1995). Such a model can be useful in general sensor fusion problemns, for
example in the fusion of an audio signal with a video signal in lipreading. Because different
scnsory signals generally have diflferent handwidths, it may be useful to couple separate
Markov models that are developed specifically for cach of the individual signals. The al-
ternative is to force the problem into an IMM(1,1) {framework by cither oversampling the
slower signal, which requires additional parameters and leads to a high-variance estima-
tor, or downsampling the faster signal, which gencrally oversmoothes the data and yields
a biased estimator. Consider the HMM(1,2) structure shown in Figure 10a. This model
involves two ITMM(1,1) backbones that are coupled together via undirected links hetween
the state variables. Let ]]1-(]) and ()1(]) denote the i™ state and # output of the “fast”

h gtate and "

chain, respectively, and let ]Ii( ) and ()5 ) denote the i output of the “slow”

chain. Suppose that the fast chain is sainpled 7 times as often as the slow chain. Then
1) . 2) oo . . . o

11 ) is commected Lo ]]1-( ) for 4 cqual to 1(i - 1) -1 1. Given this value for ¢/, the Markov

model {for the coupled chain implies the following conditional independencies for the state
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Figure 10: (a) the UPIN structure for the HMM(1 ,2) model with 7 =2, (1) a triangulation
of this UT “IN structure.
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variables:

My 0 @m0 n® o, nd, oM, 1®, 0, ol o®yu®, n®
(42)

as well as the following conditional independencies for the output variables:
0N, 0N 1 oM n® 0@, nM om  nE oDy uy. (43

Additional conditional independencies can be read ofl the UPIN structure (see Figure 10a).

As is readily scen in Figure 10a, the IMM(1,2) graph is not triangnlated, thus the
IMM(1,2) probability model is not decomposable.  However, the graph can be readily
triangulated to form a decomposable cover for the HMM(1,2) probability model (see Scc-
tion 3.1.2). The JLO algorithin provides an efficient algorithm for calculating likelihoods in
this graph. This can be seen in Figure 10b, where we show a triangulation of the 11IMM(1,2)
graph. The triangulation adds O(N},) links to the graph (where Ny, is the number of hidden
nodes in the graph) and creates a junction tree in which cach clique is a cluster of three
state variables from the underlying UPIN structure. Assuining e values for cach state vari-
able in cach chain, we obtain an algorithin whose time complexity is ()(]\7;,7:1,3). This can
be compared 1o the naive approach of transforming the HMM(1,2) model to a Cartesian
product. IMM(1,1) model, which not only has the disadvantage of requiring subsampling
or oversampling, but also has a time complexity of O(N,m?).

Dirccted graph semantics can also play an itnportant role in constructing interesting vari-
ations on the hidden Markov mmodel theme. Consider Figure 11a, which shows an TTMM(1,2)
model in which a single output stream is coupled to a pair of underlying state sequences. In
a speech modeling application such a structure might he used Lo capture the fact that a given
acoustic pattern can have multiple underlying articulatory causes. For example, equivalent
shifts in formant frequencics can be cansed by lip-roundiug or tongue-raising; such phenomn-
cna are generically refered to as “trading relations” in the speech psychophysies literature
(Lindblom 1990; Perkell et al. 1993). Once a particular acoustic pattern is observed, the
causes hecome dependent; thus for example, evidence that the lips are rounded would act
to discount inferences that the tongue has been raised. These inferences propagate forward
and backward in time and couple the chiaius, Formally, these induced dependencies are ac-
counted for by the links added between the state sequences during the moralization of the
graph (sce Figure 11h). This figure shows that the underlying calculations for this model
arc closely related {o those of the carlier HMM(1,2), but the model specification is very
different in the two cases.

Saul and Jordan (1996) have proposed a second extension of the HMM(1,1) model which
is motivated by the desire to provide a more eflective model of coarticulation (sce also
Stolorz, 1994). In this model, shown in IFigure 12, coarticulatory influcnces are modeled
via additional links between output variables and states along an HMM(1,1) backbone.
One approach 1o performing calenlations in this model is to treat it as a K "-order Markov
chain, aud transform it iito an HMM(1,1) inodel by defining higher-order state variables. A
graphical modeling approach is more flexible it is possible for example to introduce links
bhetween states and outputs J$ time steps apart without introducing links for the intervening
time intervals. More generally, the graphical modeling approach to the IMM(K,1) model
allows the specification of different neraction matrices at different time scales; this is
awkward in the K order Markov chain formalisn.
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Figure 11: (a) the DPIN structure for HMM(1,2) with a single observable sequence coupled
to a pair of underlying state sequences, (b) the moralization of this DPIN structure.
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Figure 12: The UPIN structure for IMM(3,1).
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The HMM(3,1) graph is triangulated as is, and thus, the time complexity of the J1.O
algorithm is therefore O(Npm3). Tngeneral @ 1 IMM(K,1) graph creates cliques of size
O(n’) and the JLO algorithm runs in time O(N,m™).

As these examples suggest, the graphical modeling framework provides a useful frame-
work for exploring extensions of hidden Markov m odels. The examples also 1nake clear,
Liowever, that the graphical algorithing are no paniacea. The m? complexity of IMM(IS,1)
will be prohibitive for large IN. Also, the generalization of HMM( 2) 1o HMM(1,K) (con-
plings of K chains) is intractable. Recent rescarch has therefore focused on approximate
algorithins for inference in such structures  see Saul aud Jordan (1996) for IIMM(IK,1) and
Ghahramani and Jordan (1996) and Williamns and 1linton (1990) for 11 MM(1,K). These
authors have developed an approximation methodology based on mean-ficld theory from
stat.istical physics. While discussion of mean-field algorithing is heyond thescop ) Of this
paper, it is worth noting that the graphical modecling framework plays a useful role in the
developmaent of these approximations. Yssentially the mean-field approach involves creating,
a simplified grapl for which tractable algoritlnns are availa hle, and minimizing, a proba-
bilistic distance between the tractable graph and the intractable graph. The J1L,O algorit 1,1y

is call ed as a subroutine on the trac able & raph during the minimization process.

9 LLecarning and PINs

0.1 Paramcter Estimation for PPINs

The paramecters of a graphical model can be estimated with maximum-likelihood (M1.),
maximume-a-posteriori (MATD), or full Bayesian methods, using traditional technigues such
as gradient descent, expectation-maxinmization (I5M) (e.g., Dempster et al,, 1977), and
Monte-Carlo sampling (c.g., Neal, 1993). For the standard HMM(1,1) model discussed in
this paper, where cither discrete, Gaussian, or Gaussian-mixture codebooks are used, a
M1, or MAP cstimate using XM is a well-known eflicient approach (Poritz 1988; Rabiner
1989). Aun important aspect of the application of the 1'M algorithin to PINs is that the
J1.O algorithm can be used to perform the 1 step.

For purposes of illustration, and in keeping with the rest of the paper, let us consider
the case where all variables in U are discrete. Let % and pa(X)7 denote the kth state
of variable X and jth state of variables pa(X), respectively. Suppose we have a directed
HMM-like model M (a DPIN) with mutually independent parameters 0 = Ujpd 01, 001},
where 0y = p(h¥pa(11;)7, M) and Og . = p(oF|pa(0;)7, M) for all 7. In addition, suppose
we have observed data 1D = {e), ..., cg}, an (iid) random sample fromn the true distribution.

The M algorithin finds a local maximun of the likelihood p(12]0, M) by initializing
the parameters 8 (c.g., at random or via some clustering algorithin) and repeating 1 and M
steps. Inthe 19 step, we compute the expected suflicient statistic for cach of the parameters,
given 1 and the current values for 6. Let Sy be the suflicient statistic for 0y, The
expected suflicient statistic 12(Syx]12, 0, M) is given by
s _
B(SunD,0,M) = SN " p(hd pa(113) e, 0, M)
1

As mentioned, an important feature of 11 1M algorithm applied to 1’INs is that cach term
in the sum can he computed yging the J1.O algorithm. The expected sufficient statistic for
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0ok is computed similarly. In the M step, we use the expected suflicient statistics as if they
were actual suflicient statistics, and set the new values of 0 to be those that iaximize the
likelihood of these statistics:
1Sy, 0,M) E(SokD,0,M)
0115k = <~ 3or OOk = s 3arcn g
}1;‘. ]‘/(;5]]]';"]]),0,]\4) ’ }71,‘. ]o(S()A,-A.U),O,M)

The KM algorithm also can be used to find a local maximum of the posterior proba-
bility p(0)D, M) o p(D|0, M) - p(0|M), where p(0]M) is the parameter prior. Priors most
often used are conjugate distributions, such as the Dirichlet distribution for the parame-
ters of diserete variables and the mixing cocflicients of Gaussian-mixture codebooks, and
the normal-Wishart distribution for the parameters of Gaussian codebooks (DeGroot 1970,
Buntine 1994; Heckerman and Geiger 1995). These priors have also been used in MAD
estimates of standard HMMs (e.g., Gauvain and liee, 1994). Heckerman and Geiger (1995)
describe a simple method for assessing these priors.

The use of the KM algorithm for UPINs is similar. Supposce that thie undirected model A
consists of diques Cy; such that the parameters of G5 and (5,5 are the samne for any i) and
ip. That is, suppose p(C ; = (:f',jIJW) = 04 for all <. I addition, suppose that the parameters
0 - U0 are mutually independent. In this case, we can estimate the parameters for the
clique marginals, and then use Jitousek’s 11°1 algoritlim on a triangulation of M to compute
a consistent estimate of the joint distribution. As in the dirvected case, we can use the 31,0
algorithm to perform the 14 step:

S
B(Si|D,0,M) = >N " p(cf jler, 0, M)
-1 1

9.2 Model Sclection and Averaging for I’INs

hisome situations it is s fill to use data to guide the selection of an appropriate model.
For example, hie presen ¢ ¢ of somie arcs or the number of states of a hiddenvariablemay he
in doubt. One solution to this problemn is the Bayesian approach, in which we assign prior
probabilitics p(AM) to diflferent models, and compute their relative posterior probabilities
given datac

(MDY o p(M) p(D|M) = p(M) /],(1)|0,M) p(B|M) dO (44)

We then select ihe model with the highest posterior probability, or average the predictions
of {two or more models weighted by their relative posterior probabilitics.

When data is inissing for example, when some variables are hidden  the exact con -
putation of " the integral in Iiquation 44 is usually intractable. Nonetheless, simple approxi-
mations to this integral exist, such @ the Bayesian Information Criterion (131C) described
by Schwarz (1978):

- l
log p(D|M) = log p(D)0, M) - ; log §

where 0 is the M1, estimate, S is the number of cases in 1), and d is the dimension of M-

typically, the number of paramecters of M. The {irst terin of this “score” for M rewards
how well the data fits A/, whereas the second tern punishes model complexity. Note that
this score does not depend on the parameter prior, and thus can be applied casily.! Tor

'One caveat: The BIC score is derived under the assnmption that the parameter prior is positive through-
oul its domain.
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examples of applications of BIC in the context of PINs and other statistical models, see
Raftery (1995).

The BIC score is the additive inverse of Rissancew’s (1987) minimum description length
(MD1.). Other scores, which can be viewed as approximations to the marginal likelihood, are
hypothesis testing (Raftery 1995) and cross validation (Fuug and Crawford 1990). Buntine
(in press) provides a compreliensive review of the literature on learning PINs,

In the context of HMM(N, J) type structures, an obvious question is how one could
learn such structure from data, where /& and J are unkuown a priori. From a model
identification viewpoint, this is an casier problem than that of learning an arbitrary PIN,
because the possible models under consideration are highly constrained. Thus, using both
the estimation techniques for a particular model desceribed in the previous section (and
the J1O algorithm for solving the F-step as described in detail carlier in the paper), and
the Bayesian (and alternative) model selection procedures outlined abhove, the alporithinic
prescriptions for learning such models it a principled fashion are alveady in place.

10 Summary

Probabilistic independence networks provide a useful framework for both the analysis and
application of multivariate probability models when there is considerable structure in the
wodel in the form of conditional independence. The graphical modelling, approach hotly
clarifies the independence semantics of the model and vields cflicient. computational algo-
rithms for probabilistic inference. This paper has shown that it s useful to cast 11IMM
structures in a graphical model] framework. In particular, the well known F-I3 and Viterbi
algorithins were shown to be special cases of more general algorithims from the graphical
modelling literature, Fartherinore, more complex 1IMM structures, beyond the traditional
{irst-order model, can be analyzed profitably and directly using gencrally-applicable graph-
ical modcling techniques.
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Appendix 1: The Viterbi Algorithm for HMM (1,]) is a Spcecial Case of
Dawid’s Algorithm

As with the inference problem, let the final clique in the chain contaiming (Hy. 1, Hy) be
the root clique and use the sane schedule, i.c., first a “left-to-right” collection phasce into the
root. clique, followed by a “right-to-left” distribution phase out from the root clique. Again
it is assumed that the junction tree has been initialized so that the potential functions are
the local marginals, and the observable evidence ¢ has been entered into the cliques in the
same manner as described for the inference algorithin.

We refer again to Figure 8: the sequence of flow and absorption operations is identical
to that of the inference algorithnn with the exception that marginalization operations are
replaced by maximization.  Thus, the potential on the separator hetween (O;, 11;) and
(11;- 1, 11;) is initially updated 1o

Jo.(hi) = niaxy)(h,‘,(),-) = p(hy, 0f). (45)

The update factor for this separator is

i, o
Nor(hy = PV g, (46)
‘ p(l)
and after absorption into the clique (M;. 1, 1;) one gets
Jo:(izy i) = plha v, hi)p(of i) (47)
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Now consider the flow from clique (11;. o, H; 1) to (1131, 1), Let ;5 = {1;,..., H;}
denote a set of consecutive observable variables and L} - = {h}, ..., 13}, denote the observed
values for these variables, 1 <17 < 7 < N. Assume that the potential on separator 11,1 has
heen updated to

fq)“, (D y) = max p(hio v, hag 0,07 509) (48)

hyieo

via carlier flows inthe schedule. 111118, the update factor for separator H; 1 1)( (7 0] 14¢'S

maxy, o, p(io1, G 9,97 409)

Aoy (i) = - 49
1, 1( 1) 7’(]“» J) ( )
and this gets ab sorhed into clique (i1, 11;) t () produce
Jay (hion, i) = Jou(hio v, i hay - (i 1) (50)
maxy, ., Pl 1,y 9,07 ;.
= p(hi 1, h)porhe)- (Ui i 2 9hi). (51)
p(hi 1)

We can now obtain the new potential ou the separator for the flow from clique (11;. 4, 11;)
10 (]]7', ]]7'_| 1),

fq,]y.,-(/lh;) = max Jay (Die 1, 1) (52)
: ])(0;‘/.,-),ﬁ—f,?{p(/,,whl, 1),3;j§}>\; Py, s 2,415 1)) (53)
: 1)(()3I’lfi),{§lf@§ (Uil )p(hic vyl 209750 1) ) (54)
o gnax ]’(hi;h],i» 15, 01,0) (55)

which is the result one expects for the updated potential at this clique. Thus, we can express
the separator potential fg., . (1) recursively (Vi Fquation 54) as

Ja, (Ii) = plof|hi) I]I)Z\X{])(/I,"/II‘, DJay ., (hio 1)} (56)
tio 1

This is the same recursive cquation as used in the 4 variables in the Viterbi algorithim
(Ioquation 33a in Rabiner {1990)): the sepavator potentials in Dawid’s algoritlnn using a
lefi-to-right schedule are exactly the same as the 8's used in the Viterbi method {for solving
the MAP problem in HMM(1,1).

Proceeding recursively in this manner one finally obtains at the root clique

fﬂ'l,}\v(h/\’- 1L, hn) = ax plhn. 1,0 v 2,07 n) 57)
f1,N- 2

from which one can get the likehhood of the evidence given the most likely state of the
hidden variables:

7 ((‘,) : max fq,] N(hN- ],]"N) (58)
hn. 1. e !
= maxp(hy, N, ¢ N) : (h9)
hy N ’ ’

Identification of the values of the hidden variables which maximize the evidence like-
lihood can be carried out in the standard manner as i the Viterbi method, namely by
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keeping @ pointer at cach clique along the flow it the forward divection back to the previous
cligue and then backtracking along this list of pointers from the root clique after the collec-
tion phasc is complete. An alternative approach is to use the distribute Phase of the 1)awid
algoritinn: this has the saince effect, namely, once the distribhution flows are complet ed, cach
local clique can caleulate both the maxiimun value of the evidence likelih ood given the
hidden variables and the values of the hidden variables in this inaximum which are local to
that particular cligue.
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